How do you integrate #int arcsinx# by integration by parts method?

1 Answer
Sep 26, 2017

#intsin^(-1)xdx=xsin^(-1)+(1-x^2)^(1/2)+C#

Explanation:

IBP formula

#I=intcolor(red)(u)v'dx=intcolor(red)(u)v-vcolor(red)(u')dx#

we ahve

#intsin^(-1)xdx#

let#" "color(red)( u=sin^(-1)x=>u'=1/sqrt(1-x^2))#

#v'=1=>v=x#

#I=xcolor(red)(sin^(-1)x)-intx/color(red)(sqrt(1-x^2))dx#

now
#intx/color(red)(sqrt(1-x^2))dx=intx(1-x^2)^(-1/2)dx#

by inspection we have

#=-(1-x^2)^(1/2)#

this is left as an exercise for the reader to verify

finally we have

#intsin^(-1)dx=xsin^(-1)+(1-x^2)^(1/2)+C#