How do you integrate int e^(3x)cos(2x)e3xcos(2x) by integration by parts method?

1 Answer
Feb 2, 2017

I got: 9/13[e^(3x)/3cos(2x)+2/9e^(3x)sin(2x)]+c913[e3x3cos(2x)+29e3xsin(2x)]+c
BUT check my maths.

Explanation:

Ok let us try:
inte^(3x)cos(2x)dx=e^(3x)/3cos(2x)-int(e^(3x)/3)(-2sin(2x))dx=e^(3x)/3cos(2x)+2/3int(e^(3x))sin(2x)dx=e3xcos(2x)dx=e3x3cos(2x)(e3x3)(2sin(2x))dx=e3x3cos(2x)+23(e3x)sin(2x)dx=
again:
=e^(3x)/3cos(2x)+2/3[e^(3x)/3sin(2x)-int(e^(3x)/3)(2cos(2x))dx]=e3x3cos(2x)+23[e3x3sin(2x)(e3x3)(2cos(2x))dx]

So basically we get:

inte^(3x)cos(2x)dx=e^(3x)/3cos(2x)+2/9e^(3x)sin(2x)-4/9inte^(3x)(2cos(2x))dxe3xcos(2x)dx=e3x3cos(2x)+29e3xsin(2x)49e3x(2cos(2x))dx

Now a trick....
Let us take -4/9inte^(3x)(2cos(2x))dx49e3x(2cos(2x))dx to the left of the == sign:
inte^(3x)cos(2x)dx+4/9inte^(3x)(2cos(2x))dx=e^(3x)/3cos(2x)+2/9e^(3x)sin(2x)e3xcos(2x)dx+49e3x(2cos(2x))dx=e3x3cos(2x)+29e3xsin(2x)
add the two integral on the left:
13/9inte^(3x)(2cos(2x))dx=e^(3x)/3cos(2x)+2/9e^(3x)sin(2x)139e3x(2cos(2x))dx=e3x3cos(2x)+29e3xsin(2x)
and:
inte^(3x)(2cos(2x))dx=9/13[e^(3x)/3cos(2x)+2/9e^(3x)sin(2x)]+ce3x(2cos(2x))dx=913[e3x3cos(2x)+29e3xsin(2x)]+c