How do you integrate #int e^(sqrt(2x))# by parts?
1 Answer
Jan 19, 2017
Explanation:
#I=inte^(sqrt(2x))dx#
Let
#I=inte^t(tcolor(white).dt)=intte^tdt#
We will use integration by parts now, which takes the form
#{(u=t" "=>" "du=dt),(dv=e^tdt" "=>" "v=e^t):}#
Then:
#I=uv-intvdu#
#I=te^t-inte^tdt#
#I=te^t-e^t+C#
#I=e^t(t-1)+C#
Returning to
#I=e^sqrt(2x)(sqrt(2x)-1)+C#