How do you integrate #int e^sqrtx# by integration by parts method?
1 Answer
Sep 25, 2016
Explanation:
#inte^sqrtxdx#
Let
#inte^sqrtxdx=int2te^tdt=2intte^tdt#
Now, using integration by parts, which takes the form
#{(u=t" "=>" "du=dt),(dv=e^tdt" "=>" "v=e^t):}#
Thus:
#2intte^tdt=2[te^t-inte^tdt]=2te^t-2e^t+C#
Factoring and back-substituting with
#inte^sqrtxdx=2e^sqrtx(sqrtx-1)+C#