How do you integrate #int e^x tan x dx # using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer t0hierry Apr 25, 2016 #\tan(x) = -i \frac{1-e^{-2ix}}{1+e^{-2ix}} = -i - 2 i \sum_{k=1}^\infty (-1)^k e^{-2ikx}# # \int e^x \tan(x)\ dx = -i e^x - 2 i \sum_{k=1}^\infty (-1)^k \int e^{(1-2ik)x}\ dx# #= -i e^x -2i \sum_{k=1}^\infty \frac{(-1)^k}{1-2ik} e^{(1-2ik)x} + C # that involves the Lerch Phi function Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 13913 views around the world You can reuse this answer Creative Commons License