How do you integrate #int sec^2(4x)(3-4tan(4x))^3 dx# by using the substitution method?

1 Answer
Jan 14, 2017

Let #u = 3 - 4tan(4x)", then "du = -16sec^2(4x)dx#
#sec^2(4x)dx = -1/16du#

Explanation:

Substitute the above into the integral

#intsec^2(4x)(3 - 4tan(4x))^3dx = -1/16intu^3du = -u^4/64 + C#

Reverse the substitution:

#intsec^2(4x)(3 - 4tan(4x))^3dx = -(3 - 4tan(4x))^4/64 + C#