How do you integrate #int sin^2(x) dx# using integration by parts?

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

Answer

Write a one sentence answer...

Answer:

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

18
Bio Share
Nov 3, 2015

Answer:

#intsin^2(x)dx=x/2-sin(2x)/4+c#,
where #c# is the constant of integration.

Explanation:

#intsin^2(x)dx=intfrac{d}{dx}(x)sin^2(x)dx#

#=xsin^2(x)-intxfrac{d}{dx}(sin^2(x))dx#

#=xsin^2(x)-intx(2sin(x)cos(x))dx#

#=xsin^2(x)-intxsin(2x)dx#

#=xsin^2(x)+1/2intxfrac{d}{dx}(cos(2x))dx#

#=xsin^2(x)+1/2[xcos(2x)-intfrac{d}{dx}(x)cos(2x)dx]#

#=xsin^2(x)+1/2xcos(2x)-1/2intcos(2x)dx#

#=xsin^2(x)+1/2xcos(2x)-sin(2x)/4+c#,
where #c# is the constant of integration.

#=x/2(cos(2x)+2sin^2(x))-sin(2x)/4+c#

#=x/2-sin(2x)/4+c#

Was this helpful? Let the contributor know!
1500
Trending questions
Impact of this question
12231 views around the world
You can reuse this answer
Creative Commons License