How do you integrate #int x^2 e^(-x)dx# using integration by parts?

1 Answer
Apr 11, 2018

#intx^2e^(-x)dx=-e^(-x)(x^2+2x+2)+C#

Explanation:

Integration by parts says that:
#intv(du)/(dx)=uv-intu(dv)/(dx)#

#u=x^2;(du)/(dx)=2x#
#(dv)/(dx)=e^(-x);v=-e^(-x)#

#intx^2e^(-x)dx=-x^2e^(-x)-int-2xe^(-2x)dx#

Now we do this:
#int-2xe^(-2x)dx#

#u=2x;(du)/(dx)=2#
#(dv)/(dx)=-e^(-x);v=e^(-x)#

#int-2xe^(-x)dx=2xe^(-x)-int2e^(-x)dx=2xe^(-x)+2e^(-x)#

#intx^2e^(-x)dx=-x^2e^(-x)-(2xe^(-x)+2e^(-x))=-x^2e^(-x)-2xe^(-x)-2e^(-x)+C=-e^(-x)(x^2+2x+2)+C#