Let, #I=int(x^2+x+5)/sqrt(x^2+1)dx=int{(x^2+1)+(x+4)}/sqrt(x^2+1)dx#.
#:. I=int{(x^2+1)/sqrt(x^2+1)+(x+4)/sqrt(x^2+1)}dx#,
#=intsqrt(x^2+1)dx+int(x+4)/sqrt(x^2+1)dx#,
#=I_1+1/2int(2x)/sqrt(x^2+1)dx+4int1/sqrt(x^2+1)dx#,
#:. I=I_1+1/2I_2+4I_3..........................(star)#, where,
#I_1=intsqrt(x^2+1)dx#,
#:. I_1=x/2sqrt(x^2+1)+1/2ln|(x+sqrt(x^2+1))|...........(star_1)#;
#I_2=int(2x)/sqrt(x^2+1)dx#,
#=int(x^2+1)^(-1/2)d/dx(x^2+1)dx#,
#=(x^2+1)^(-1/2+1)/(-1/2+1)#,
#:. I_2=2sqrt(x^2+1)....................................(star_2)#;
#I_3=int1/sqrt(x^2+1)dx#,
#:. I_3=ln|x+sqrt(x^2+1)|..............................(star_3)#.
#"Using "(star_1), (star_2)" and "(star_3)" in "(star)," we have,"#
#I=x/2sqrt(x^2+1)+1/2ln|(x+sqrt(x^2+1))|+1/2*2sqrt(x^2+1)#
#+4*ln|x+sqrt(x^2+1)|, i.e., #
#I=1/2[(x+2)sqrt(x^2+1)+9ln|(x+sqrt(x^2+1))|]+C#.
Enjoy Maths.!