How do you integrate #int x^2e^x# from 0 to 1 by integration by parts method?
2 Answers
Explanation:
If you are studying maths, then you should learn the formula for Integration By Parts (IBP), and practice how to use it:
I was taught to remember the less formal rule in word; "The integral of udv equals uv minus the integral of vdu". If you struggle to remember the rule, then it may help to see that it comes a s a direct consequence of integrating the Product Rule for differentiation.
Essentially we would like to identify one function that simplifies when differentiated, and identify one that simplifies when integrated (or is at least is integrable).
So for the integrand
Let
Then plugging into the IBP formula gives us:
We will now need to apply IBP a second time to integrate
Let
Substituting this reulti nto [1] gives ud
Hence,
Use integration by parts twice, taking the x term as that which you derive, and the
Explanation:
The method of integration by parts can take a little practice before the answers start to jump out at you. Usually, the most challenging part of this method is figuring out what to derive and what to "anti-derive." You may use different variables, but I will be using this form in my explanation:
I will show how to find the anti-derivative first, then evaluate.
First, we need to recognize that the derivative of
Thus, we can set
That gives us:
We still have that
That gives us:
(Don't forget the terms you found in the first usage of integration by parts, or the 2!)
We can find the integral of
or
To evaluate this with limits of integration from 0 to 1, we have:
Because
And so, our final answer is: