How do you integrate #int x^3/(x^2+2)^3# by integration by parts method?

1 Answer
Jan 23, 2017

Integration by parts is: #intudv=uv-intvdu#
choose #u# so that #dv# can be integrated by variable substitution.

Explanation:

let #u=x^2 and dv=(x)/(x^2+2)^3dx#, because this will allow:

#v = intx/(x^2+2)^3dx#

to be integrated by letting #t = x^2+2#, then #dt = 2xdx# or #dt/2 = xdx#

This makes the integral become:

#v = 1/2intt^-3dt#

#v = -1/4t^-2#

Reversing the substitution:

#v=-1/(4(x^2+2)^2#

and #du=2xdx#

#intx^3/(x^2+2)^3dx = (x^2)(-1/(4(x^2+2)^2)) - int-1/(x^2+2)^2(2x)dx#

#intx^3/(x^2+2)^3dx = -x^2/(4(x^2+2)^2) + 1/4int(2x)/(x^2+2)^2dx#

The last integral is the same sort of variable substitution:

#intx^3/(x^2+2)^3dx = -x^2/(4(x^2+2)^2) - 1/(4(x^2+2)) + C#