How do you integrate #int x5^x dx# using integration by parts?
1 Answer
Apr 19, 2016
Explanation:
Via integration by parts:
#intudv=uv-intvdu#
In the case of
#intx(5^x)dx#
We set
#u=x" "=>" "(du)/dx=1" "=>" "du=dx#
#dv=5^xdx" "=>" "intdv=int5^xdx" "=>" "v=5^x/ln5#
We plug these values in to see that
#intx(5^x)dx=x(5^x/ln5)-int5^x/ln5dx#
#=(x(5^x))/ln5-1/ln5int5^xdx#
#=(x(5^x))/ln5-1/ln5(5^x/ln5)+C#
#=(x(5^x))/ln5-5^x/(ln5)^2#