Looking first at the indefinite integral, ie
#int x arcsin(x^2) dx#
We can use IBP:
#= int (x^2/2)^prime arcsinx^2 dx#
#= x^2/2 arcsinx^2 - int x^2/2 (arcsinx^2)^prime dx#
Recognising that: #d/dx(arcsin(u)) = 1/sqrt(1 - u^2) * (du)/dx#
#= x^2/2 arcsinx^2 - int x^2/2 * (2x)/sqrt(1-x^4) dx#
#= x^2/2 arcsinx^2 - int x^3/sqrt(1-x^4) dx#
#= x^2/2 arcsinx^2 - int 2 * (-1/4) * ( sqrt(1-x^4) )^prime dx#
#= x^2/2 arcsinx^2 + 1/2 sqrt(1-x^4) + C#
The definite integral is, therefore:
#[x^2/2 arcsinx^2 + 1/2 sqrt(1-x^4) ]_0^1#
# = (1/2 * pi/2 + 1/2 * 0 ) - (0 + 1/2 ) #
#= pi/4 - 1/2#