How do you integrate #ln(x^2-x+2)dx#?

1 Answer
Jul 3, 2016

#=(x- 1/2) ln(x^2-x+2) - 2x + sqrt 7 arctan ( (2x-1)/sqrt 7)#

Explanation:

#int dx qquad ln(x^2-x+2)#

we use IBP

#int u v' = uv - int u' v#

and the trick here is

#u = ln(x^2-x+2), u' = (2x-1)/(x^2-x+2)#
#v' = 1, v = x#

so we have

#xln(x^2-x+2) - int dx qquad x(2x-1)/(x^2-x+2) qquad star#

for #int dx qquad x(2x-1)/(x^2-x+2) # this becomes:

#int dx qquad (2x^2-x)/(x^2-x+2) #

next bit is like long division only easier

#= int dx qquad (2x^2-2x + 4 + x- 4)/(x^2-x+2) #

#= int dx qquad 2 + (x- 4)/(x^2-x+2) #

now we set it up for a log solution by setting up this pattern: #(f'(x)) / f(x)#

#= 2x + int dx qquad (1/2(2x- 8))/(x^2-x+2) #

#=2x + int dx qquad (1/2(2x- 1)-7/2)/(x^2-x+2) #

#= 2x + int dx qquad (1/2(2x- 1))/(x^2-x+2) - 7/2 1/(x^2-x+2) #

#= 2x + 1/2 ln(x^2-x+2) - 7/2 int dx qquad 1/(x^2-x+2) #

if we plug this all into #star# we have

#xln(x^2-x+2) - ( 2x + 1/2 ln(x^2-x+2) - 7/2 int dx qquad 1/(x^2-x+2) )#

#=(x- 1/2) ln(x^2-x+2) - 2x + 7/2 int dx qquad 1/(x^2-x+2) qquad square#

for # int dx qquad 1/(x^2-x+2) #

we complete the square, looking for a tan sub to finish it off, so

# int dx qquad 1/((x-1/2)^2 - 1/4 + 2) #

#= int dx qquad 1/((x-1/2)^2 + 7/4) #

#= int dx qquad 1/(7/4 tan^2 phi + 7/4) # using the sub #(x-1/2)^2 = 7/4 tan^2 phi# or #(x-1/2) = sqrt 7/2 tan phi#

so #dx = sqrt 7/2 sec^2 phi \ d phi#

#=sqrt 7/2 int d phi qquad sec^2 phi \ 1/(7/4 sec^2 phi ) #

#=2/ sqrt 7 int d phi qquad #

#=2/ sqrt 7 arctan (2 (x-1/2)/sqrt 7)#

parking this back into #square#

#=(x- 1/2) ln(x^2-x+2) - 2x + 7/2 2/ sqrt 7 arctan (2 (x-1/2)/sqrt 7)#

#=(x- 1/2) ln(x^2-x+2) - 2x + sqrt 7 arctan ( (2x-1)/sqrt 7)#