How do you integrate #lnx/x^.5#?
1 Answer
May 26, 2016
Explanation:
This can be written as
#intlnx/sqrtxdx#
Integration by parts takes the form:
#intudv=uv-intvdu#
Here, let
These imply that:
#{(u=lnx" "=>" "du=1/xdx),(dv=x^(-1/2)dx" "=>" "v=2x^(1/2)=2sqrtx):}#
Thus,
#intlnx/sqrtxdx=2sqrtxlnx-int(2sqrtx)/xdx#
#=2sqrtxlnx-2intx^(-1/2)dx#
#=2sqrtxlnx-4sqrtx+C#
#=2sqrtx(lnx-2)+C#