How do you integrate #sin (ln x)#?

1 Answer
Apr 1, 2018

#intsin(lnx)dx=1/2(xsin(lnx)-xcos(lnx))+C#

Explanation:

So, we want #intsin(lnx)dx#

Let #u=lnx#

#du=dx/x#

#xdu=dx#

Now we want to get #x# in terms of #u.# Recalling that #u=lnx:#

#e^lnx=e^u#

#x=e^u#

So,

#e^udu=dx#

Apply the substitution, yielding

#inte^usin(u)du#

This will require two applications of Integration by Parts.

Let

#w=e^u#
#dw=e^udu#
#dv=sin(u)du#
#v=-cos(u)#

Then, integrating by parts with #wv-intvdw#:

#inte^usin(u)du=-e^ucosu+inte^ucosu#

We will now have to determine #inte^ucosudu#

#w=e^u#
#dw=e^udu#
#dv=cosudu#
#v=sinu#

#inte^ucosudu=e^usinu-inte^usinudu#

So, we see our original integral showed up here.

Recalling that #inte^usin(u)du=-e^ucosu+inte^ucosudu#, substitute in #e^usinu-inte^usinudu#:

#inte^usin(u)du=-e^ucosu+e^usinu-inte^usinudu#

Solve for #inte^usinudu#:

#2inte^usinudu=e^usinu-e^ucosu#

#inte^usinu=1/2(e^usinu-e^ucosu)+C#

Don't forget the constant of integration.

Rewrite in terms of #x:#

#intsin(lnx)dx=1/2(e^(lnx)sin(lnx)-e^(lnx)cos(lnx))+C#

Since #e^lnx=x:#

#intsin(lnx)dx=1/2(xsin(lnx)-xcos(lnx))+C#