#intsqrt(cos2x)/(cosx)dx#?

1 Answer
Nov 17, 2017

#sqrt2*arcsin(sqrt2*sinx)-arctan(sinx/sqrt(cos2x))+C#

Explanation:

#int sqrt(cos2x)/cosx*dx#

=#int cosx*sqrt(cos2x)/(cosx)^2*dx#

=#int cosx*sqrt[1-2(sinx)^2]/(cosx)^2*dx#

=#int cosx*sqrt[1-2(sinx)^2]/[1-(sinx)^2]*dx#

After using #sqrt2*sinx=sinu#, #sqrt2*cosx*dx=cosu*du# and #sinx=sinu/sqrt(2)# transforms, this integral became

#int ((cosu*du)/sqrt2)*sqrt[1-(sinu)^2]/[1-(sinu/sqrt2)^2]#

#=int (sqrt2*(cosu)^2)/[2-(sinu)^2]*du#

#=sqrt2*int (cosu)^2/[1+(cosu)^2]*du#

After using #z=tanu#, #du=dz/(z^2+1)# and #(cosu)^2=1/(z^2+1)# transforms, it became

#=sqrt2*int (1/(z^2+1))/[1+1/(z^2+1)]*(dz)/(z^2+1)#

=#int (sqrt2*dz)/[(z^2+1)*(z^2+2)]#

=#int (sqrt2*dz)/(z^2+1)-int (sqrt2*dz)/(z^2+2)#

=#sqrt2*arctanz-arctan(z/sqrt2)+C#

=#sqrt2*arctan(tanu)-arctan(tanu/sqrt2)+C#

#=usqrt2-arctan(tanu/sqrt2)+C#

After using #sqrt2*sinx=sinu#, #u=arcsin(sqrt2*sinx)# and #tanu=(sqrt2*sinx)/sqrt[1-2(sinx)^2]=(sqrt2*sinx)/sqrt(cos2x)# inverse transforms, I found

#int sqrt(cos2x)/cosx*dx#

=#sqrt2*arcsin(sqrt2*sinx)-arctan(sinx/sqrt(cos2x))+C#