How do you integrate #t^5e^(-t)dt#?

2 Answers
Feb 15, 2015

Hello !

The standard method to integrate #t\mapsto t^n e^{at}# is the integration by parts :

#\int_a^b u(t)v'(t)dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t) dt#

This formula is proved if you remark that #(uv)' = u'v + uv'# and if you integrate that on #[a,b]#.

Here, consider #I_n = \int_0^x t^{n} e^{-t}dt#, #u(t) = t^n# and #v(t) = -e^{-t}#. You have #u'(t) = nt^{n-1}# and #v'(t) = e^{-t}#, therefore :

#\int_0^x t^n e^{-t} dt = \int u(t)v'(t)dt = [-t^n e^{-t}]_0^x - \int_0^x nt^{n-1} (-e^{-t}) dt#

or, easier, #I_n = -x^n e^{-x} + nI_{n-1}#.

So, you can find #I_5# step by step :

#I_5 = -x^5e^{-x} + 5I_4#
#I_4 = -x^4e^{-x} + 4I_3#
#I_3 = -x^3e^{-x} + 3I_2#
#I_2 = -x^2e^{-x} + 2I_1#
#I_1 = -xe^{-x} + I_0#
#I_0 = \int_0^x e^{-t}dt = -e^{-x} + 1#

therefore,

#I_1 = -x e^{-x} - e^{-x} + 1 = -(x+1)e^{-x} + 1#
#I_2 = -x^2 e^{-x} + 2I_1= -(x^2+2x+2)e^{-x}+2#
#I_3 = -x^3e^{-x} + 3I_2 = -(x^3 +3x^2+6x+6)e^{-x}+6#
#I_4 = -x^4e^{-x} + 4I_3 = -(x^4+4x^3+12x^2+24x+24)e^{-x} + 24#

and finally,

#I_5 =-(x^5+5x^4+20x^3+60x^2+120x+120)e^{-x}+120#

Feb 15, 2015

The answer is:

#I=-e^-t(t^5+5t^4+20t^3+60t^2+120t+120)+c#

We have to use for five times (!) the integration by parts, that says:

#intf(t)g'(t)dt=f(t)g(t)-intg(t)f'(t)dt#

We can assume that #f(t)# is, step by step, the polynomial function and #g'(t)# is the exponential function

First step:

#f(t)=t^5# and #g'(t)=e^-x#

so:

#f'(t)=5t^4# and #g'(t)=-e^-x#.

#I=intt^5e^-tdt=-t^5e^-t-int5t^4(-e^-t)dt=#

#=-t^5e^-t+5intt^4e^-tdt#.

Second step:

#f(t)=t^4# and #g'(t)=e^-x#

so:

#f'(t)=4t^3# and #g'(t)=-e^-x#.

#I=-t^5e^-t+5[-t^4e^-t-int4t^3(-e^-t)dt]=#

#=-t^5e^-t-5t^4e^-t+20intt^3e^-tdt#.

Third step:

#f(t)=t^3# and #g'(t)=e^-x#

so:

#f'(t)=3t^2# and #g'(t)=-e^-x#.

#I=-t^5e^-t-5t^4e^-t+20[-t^3e^-t-int3t^2(-e^-t)dt]=#

#=-t^5e^-t-5t^4e^-t-20t^3e^-t+60intt^2e^-tdt#.

Fourth step:

#f(t)=t^2# and #g'(t)=e^-x#

so:

#f'(t)=2t# and #g'(t)=-e^-x#.

#I=-t^5e^-t-5t^4e^-t-20t^3e^-t+60[-t^2e^-t-int2t(-e^-t)dt]=#

#=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t+120intte^-tdt#.

Fifth step:

#f(t)=t# and #g'(t)=e^-x#

so:

#f'(t)=1# and #g'(t)=-e^-x#.

#I=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t+120[-te^-t-int1(-e^-t)dt]=#

#=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t-120te^t+120inte^-tdt=#

#=-t^5e^-t-5t^4e^-t-20t^3e^-t-60t^2e^-t-120te^t-120e^-t+c=#

#=-e^-t(t^5+5t^4+20t^3+60t^2+120t+120)+c=#