How do you integrate #(x^(1/3))/(((x^(1/3))-1))#?
3 Answers
Explanation:
#I=intx^(1/3)/(x^(1/3)-1)dx#
Let
Substituting in what we know, this becomes:
#I=int(u+1)/u3(u+1)^2du=3int(u+1)^3/udu#
Expanding, then dividing:
#I=3int(u^3+3u^2+3u+1)/udu=3int(u^2+3u+3+1/u)du#
Integrating term by term:
#I=3(u^3/3+3/2u^2+3u+lnabsu)#
#I=u^3+9/2u^2+9u+3lnabsu#
Using
#I=(x^(1/3)-1)^3+9/2(x^(1/3)-1)^2+9(x^(1/3)-1)+3lnabs(x^(1/3)-1)#
If you wish, you can expand all of these terms and combine for the simplified answer of:
#I=(x-3x^(2/3)+3x^(1/3)-1)+9/2(x^(2/3)-2x^(1/3)+1)+9x^(1/3)-9+3lnabs(x^(1/3)-1)#
Continue with combining like terms, and have the
#I=x+3/2x^(2/3)+3x^(1/3)+3lnabs(x^(1/3)-1)+C#
I also got
Another way to do it is:
#int x^"1/3"/(x^"1/3" - 1)dx#
#= int cancel((x^"1/3" - 1)/(x^"1/3" - 1))^(1) + 1/(x^"1/3" - 1)dx#
#= int 1 + 1/(x^"1/3" - 1)dx#
For this, let
#=> 3int u^2du + 3int (u^2)/(u - 1)du#
Dividing the second integrand gives:
#((u^2 - 1) + 1)/(u - 1) = u + 1 + 1/(u - 1)#
so, this overall gives:
#=> 3int u^2du + 3int 1du + 3int udu + 3int 1/(u - 1)du#
#= u^3 + 3u + 3/2u^2 + 3ln|u - 1|#
#= color(blue)(x + 3x^"1/3" + 3/2x^"2/3" + 3ln|x^"1/3" - 1| + C)#
Making
so