How do you integrate #(x^2 ln x) / x#?
1 Answer
Jun 8, 2016
Explanation:
First note that one pair of
#(x^2lnx)/x=xlnx#
So, we want to find:
#intxlnxdx#
We will use integration by parts, which takes the form:
#intudv=uv-intvdu#
So, for
#{(u=lnx),(dv=xdx):}#
Differentiate
#{(du=1/xdx),(v=x^2/2):}#
Plugging these back into the integration by parts formula:
#intxlnxdx=(x^2lnx)/2-intx^2/2(1/x)dx#
#=(x^2lnx)/2-1/2intxdx#
#=(x^2lnx)/2-x^2/4+C#
#=(x^2(2lnx-1))/4+C#