How do you integrate #x^2(sinx)dx#?
1 Answer
Explanation:
Use integration by parts, which takes the form:
#intudv=uv-intvdu#
For
#u=x^2" "=>" "(du)/dx=2x" "=>" "du=2xdx#
#dv=sin(x)dx" "=>" "intdv=intsin(x)dx" "=>" "v=-cos(x)#
Thus, substituting these into the integration by parts formula, we see that:
#intx^2sin(x)dx=-x^2cos(x)-int(-2xcos(x))dx#
Simplifying the negative signs:
#intx^2sin(x)dx=-x^2cos(x)+2intxcos(x)dx#
Now, do integration by parts once more on the remaining integral:
#u=x" "=>" "(du)/dx=1" "=>" "du=dx#
#dv=cos(x)dx" "=>" "intdv=intcos(x)dx" "=>" "v=sin(x)#
Thus:
#intxcos(x)dx=xsin(x)-intsin(x)dx#
Since
#intxcos(x)dx=xsin(x)+cos(x)#
Now, returning to before:
#intx^2sin(x)dx=-x^2cos(x)+2intxcos(x)dx#
Substitute in
#intx^2sin(x)dx=-x^2cos(x)+2(xsin(x)+cos(x))#
#intx^2sin(x)dx=-x^2cos(x)+2xsin(x)+2cos(x)+C#