How do you integrate #x^3 cos(x^2) dx#?
1 Answer
Feb 24, 2017
Explanation:
#intx^3cos(x^2)dx#
Let
#I=1/2intx^2cos(x^2)(2x)dx#
#I=1/2inttcos(t)dt#
Now we should do integration by parts, which comes in the form
#{(u=t,=>,du=dt),(dv=cos(t)dt,=>,v=sin(t)):}#
Then:
#I=1/2(tsin(t)-intsin(t)dt)#
#I=(tsin(t)+cos(t))/2#
#I=(x^2sin(x^2)+cos(x^2))/2+C#