How do you integrate #(x^3+x^2+2x+1)/((x^2+1)(x^2+2)) dx#?

1 Answer
Oct 30, 2016

#(x^3+x^2+2x+1)/((x^2+1)(x^2+2)) = (x^3+2x)/((x^2+1)(x^2+2)) + (x^2+1)/((x^2+1)(x^2+2))#

Explanation:

# = x/(x^2+1)+1/(x^2+2)#

There terms may be integrated by substitution.

For the first, use #u = x^2+1# to get #1/2ln (x^2+1)#.

For the second use #x=sqrt2u# to get #1/sqrt2 tan^-1(x/sqrt2)#

We can write the integral as

#1/2ln(x^2+1)+sqrt2/2tan^-1(x/sqrt2)#