How do you integrate #(x^5)*(e^(x^2/2))#?
1 Answer
Explanation:
Let's assume
#=int(x^5)*(e^(x^2/2))dx# can be written as,
#=int(x^2)(x^2)x(e^(x^2/2))dx# Substituting with
#t# we get
#=int(2t)(2t)(e^t)dt#
#=4intt^2(e^t)dt#
Using Integration by Parts,
where
Similarly following for the problem,
#=4(t^2)inte^tdt-4int((t^2)'inte^tdt)dt+c#
#=4t^2e^t-4int2te^tdt+c#
#=4t^2e^t-8intte^tdt+c#
Applying again integration by parts in second term, we get
#=4t^2e^t-8(te^t-inte^tdt)+c#
#=4t^2e^t-8(te^t-e^t)+c#
#=4t^2e^t-8te^t-8e^t+c#
Substituting
#=4(x^2/2)^2e^(x^2/2)-8(x^2/2)e^(x^2/2)-8e^(x^2/2)+c# , where#c# is a constant
#=(4x^4-4x^2-8)e^(x^2/2)+c#