First, eliminate the out exponents by using this rule for exponents:
#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#
#(-2a^color(red)(-2))^color(blue)(3)(-5a^color(red)(-3))^color(blue)(2) =>#
#(-2^3a^(color(red)(-2) xx color(blue)(3)))(-5^2a^(color(red)(-3) xx color(blue)(2))) =>#
#(-8a^color(red)(-6))(25a^color(blue)(-6)) =>#
#(-8 xx 25)(a^color(red)(-6) xx a^color(blue)(-6)) =>#
#-200(a^color(red)(-6) xx a^color(blue)(-6))#
Next, use this rule of exponents to multiply the #a# terms:
#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#
#-200a^(color(red)(-6)+color(blue)(-6)) =>#
#-200a^color(red)(-12)#
Now, use this rule of exponents to eliminate the negative exponent:
#x^color(red)(a) = 1/x^color(red)(-a)#
#(-200)/a^color(red)(- -12) =>#
#-200/a^color(red)(12)#