How do you multiply #2x ^ { 4} \cdot ( x ^ { 3} y ^ { 2} ) ^ { 3}#?

2 Answers
May 12, 2017

See a solution process below:

Explanation:

First, expand the terms within parenthesis using this rule for exponents:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#2x^4 * (x^color(red)(3)y^color(red)(2))^color(blue)(3) = 2x^4 * x^(color(red)(3) xx color(blue)(3))y^(color(red)(2) xx color(blue)(3)) = 2x^4 * x^9y^6#

Next, rewrite the expression as:

#2x^4 * x^9y^6 = 2y^6 * x^4x^9#

Now, use this rule of exponents to multiply the #x# terms and complete the simplification:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#2y^6 * x^color(red)(4)x^color(blue)(9) = 2y^6 * x^(color(red)(4) + color(blue)(9)) = 2y^6 * x^13 = 2x^13y^6#

May 12, 2017

#2x^13y^6#

Explanation:

Begin by distributing the exponent:

#(x^3y^2)^3 = (x^(3*3)y^(2*3)) = (x^9y^6)#

We now have:

#2x^4(x^9y^6)#

Apply the exponent rule: #a^b*a^c=a^(b+c)# to the #x^4# and #x^9#

#2x^13y^6#