How do you multiply #(2y)/(3x)* (9xy)/(10y^4)# ?

2 Answers
Apr 5, 2017

When you multiply fractions, the numerators together and multiply the denominators together and divide out common factors either before or after multiplying.
# 3/( 5y^2)#

Explanation:

Multiply the numerators and factor

#2y xx 9xy = 2 xx 3 xx 3 xx x xx y xx y #

Multiply the denominators and factor

# 3x xx 10y^4 = 2 xx 3 xx 5 xx x xx y xx y xx y xx y #

Dividing out the common factors of 2, 3, x, y, and y gives

# 3/(5y^2)#

Jul 3, 2017

#=3/(5y^2)#

Explanation:

#(2y)/(3x)xx (9xy)/(10y^4)" "larr# cancel the numbers

#(=cancel2y)/(cancel3x)* (cancel9^3xy)/(cancel10^5y^4)" "larr# multiply straight across and simplify

#=(3xy^2)/(5xy^4)" "larr# cancel #x#, subtract indices of #y#

#=(3cancelxy^2)/(5cancelxy^4)#

#=3/(5y^2)#