How do you multiply #(- 3a b ) ( 4b ^ { 2} c ) ( - 2a ^ { - 1} )#?

1 Answer
Jun 2, 2017

See a solution process below:

Explanation:

First, rewrite this expression as:

#(-3 * 4 * -2)(a * a^-1)(b * b^2)c =>#

#24(a * a^-1)(b * b^2)c#

Next, use these rules of exponents to multiply the #a# terms:

#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))# and #a^color(red)(0) = 1#

#24(a * a^-1)(b * b^2)c => 24(a^color(red)(1) * a^color(blue)(-1))(b * b^2)c =>#

#24a^(color(red)(1)+color(blue)(-1))(b * b^2)c => 24a^color(red)(0)(b * b^2)c => (24 * 1)(b * b^2)c => #

#24(b * b^2)c#

Now, use these rules of exponents to finish multiplying the #b# terms:

#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#24(b * b^2)c => 24(b^color(red)(1) * b^color(blue)(2))c => 24b^(color(red)(1)+color(blue)(2))c =>#

#24b^3c#