How do you multiply #3b ^ { 3} n ^ { 2} \cdot 2b ^ { 5} n ^ { 4}#?

1 Answer
Jun 18, 2017

See a solution process below:

Explanation:

First, rewrite this expression as:

#(3 * 2)(b^3 * b^5)(n^2 * n^4) => 6(b^3 * b^5)(n^2 * n^4)#

Now, use this rule for exponents to multiply the #b# and #n# terms:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#6(b^color(red)(3) * b^color(blue)(5))(n^color(red)(2) * n^color(blue)(4)) => 6b^(color(red)(3)+color(blue)(5))n^(color(red)(2)+color(blue)(4)) => 6b^8n^6#