How do you multiply #3m ^ { - 1} n ^ { 4} \cdot m ^ { - 2} n ^ { 3}#?

1 Answer
May 30, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#3(m^-1 * m^-2)(n^4 * n^3)#

Next, use this rule for exponents to multiply the #m# and #n# terms:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#3(m^color(red)(-1) * m^color(blue)(-2))(n^color(red)(4) * n^color(blue)(3)) => 3m^(color(red)(-1) + color(blue)(-2))n^(color(red)(4) + color(blue)(3)) =>#

#3m^-3n^7#

We can now use this rule of exponents to eliminate the negative exponent:

#x^color(red)(a) = 1/x^color(red)(-a)#

#3m^color(red)(-3)n^7 => (3n^7)/m^color(red)(- -3) => #

#(3n^7)/m^color(red)(3)#