How do you multiply #3v ^ { 9} x ^ { 2} \cdot 8v \cdot 2x ^ { 7}#?

1 Answer
Jul 20, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(3 * 8 * 2)(x^2 * x^7)(v^9 * v) =>#

#48(x^2 * x^7)(v^9 * v)#

Next, use this rule of exponents to rewrite the last #v# term:

#a = a^color(blue)(1)#

#48(x^2 * x^7)(v^9 * v^color(blue)(1))#

Now, use this rule of exponents to multiply the #x# and the #v# terms:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#48(x^color(red)(2) * x^color(blue)(7))(v^color(red)(9) * v^color(blue)(1)) =>#

#48x^(color(red)(2)+color(blue)(7))v^(color(red)(9)+color(blue)(1)) =>#

#48x^9v^10#