How do you multiply #(3x y ) ^ { 4} \cdot 5^ { 0}#?

1 Answer
Jan 21, 2018

See a solution process below:

Explanation:

First, use this rule of exponents to simplify the 5 term:

#a^color(red)(0) = 1#

#(3xy)^4 * 5^color(red)(0) => (3xy)^4 * 1 => (3xy)^4#

Next, use these rules of exponents to complete the simplification:

#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(3xy)^4 = (3^color(red)(1)x^color(red)(1)y^color(red)(1))^color(blue)(4) => 3^(color(red)(1)xxcolor(blue)(4))x^(color(red)(1)xxcolor(blue)(4))y^(color(red)(1)xxcolor(blue)(4)) => 3^4x^4y^4 =>#

#51x^4y^4#