How do you multiply #(4y + 8)/ (y^2 - 2y)*(y - 2)/(y+2)#? Algebra Rational Equations and Functions Multiplication of Rational Expressions 1 Answer Harish Chandra Rajpoot Jun 19, 2018 The answer is #4/y# Explanation: Given that #\frac{4y+8}{y^2-2y}\cdot\frac{y-2}{y+2}# #=\frac{4(y+2)}{y(y-2)}\cdot\frac{y-2}{y+2}# #=4/y\cdot \frac{y+2}{y-2}\cdot\frac{y-2}{y+2}# #=4/y\cdot \frac{y+2}{y+2}\cdot\frac{y-2}{y-2}# #=4/y\cdot 1\cdot 1# #=4/y# Answer link Related questions What is Multiplication of Rational Expressions? How do you multiplying rational expressions? Is multiplication of rational expressions commutative? How do you multiply #\frac{12x^2-x-6}{x^2-1} \cdot \frac{x^2+7x+6}{4x^2-27x+18}#? How do you multiply and simplify to the lowest terms #\frac{x^3}{2y^3} \cdot \frac{2y^2}{x}#? How do you multiply #\frac{5x^2+16x+3}{36x^2-25} \cdot (6x^2+5x)#? How do you multiply and simplify the expression #2xy \cdot \frac{2y^2}{x^3}#? How do you multiply #(a^2-a-12)/(a^2-5a+4)*(a^2+2a-3)/(a^2+a-6)#? How do you multiply #(4(x+2))/(5x)*(6x^2)/(2x)#? How do you multiply #(30a^2)/(18b)*(6b)/(5a)#? See all questions in Multiplication of Rational Expressions Impact of this question 1907 views around the world You can reuse this answer Creative Commons License