How do you multiply and simplify #\frac { 45x } { 5} \cdot \frac { x ^ { 9} } { 9x ^ { 2} }#?

1 Answer
Aug 8, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(45/(5 * 9))((x * x^9)/x^2) => (45/45)((x * x^9)/x^2) =>#

#(1)((x * x^9)/x^2) => (x * x^9)/x^2#

Next, use these rules of exponents to multiply the #x# terms in the numerator of the fraction:

#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(x * x^9)/x^2 => (x^color(red)(1) * x^color(blue)(9))/x^2 => x^(color(red)(1)+color(blue)(9))/x^2 => x^10/x^2#

Now, use this rule of exponents to complete the simplification:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#x^color(red)(10)/x^color(blue)(2) => x^(color(red)(10)-color(blue)(2)) => x^8#