How do you multiply and simplify #\frac { 5x ^ { 2} - 8x - 4} { 5x ^ { 2} - 7x - 6} \cdot \frac { x ^ { 2} - 16} { 5x ^ { 2} + 22x + 8}#?

2 Answers
Jan 2, 2018

#(x-4)/(5x+3)#

Explanation:

#"factorise numerators/denominators and cancel any"#
#"common factors"#

#rArr(cancel((5x+2))cancel((x-2)))/((5x+3)cancel((x-2)))xx((x-4)cancel((x+4)))/(cancel((5x+2))cancel((x+4)))#

#=(x-4)/(5x+3)to(x!=-3/5)#

Jan 2, 2018

See below.

Explanation:

#(5x^2-8x-4)/(5x^2-7x-5)*(x^2-16)/(5x^2+33+8)#

Factor numerators and denominators:

#x^2-16=(x+4)(x-4)# ( difference of two squares )

#((5x+2)(x-2))/((5x+3)(x-2))*((x+4)(x-4))/((5x+2)(x+4))#

Cancelling like factors:

#(cancel((5x+2))cancel((x-2)))/((5x+3)cancel((x-2)))*(cancel((x+4))(x-4))/(cancel((5x+2))cancel((x+4)))=(x-4)/(5x+3)#