First, rewrite this expression as:
#(5/10)((x^4 * x)/x)(y^7/(y^2 * y)) ->#
#(1/2)((x^4 * color(red)(cancel(color(black)(x))))/color(red)(cancel(color(black)(x))))(y^7/(y^2 * y)) ->#
#1/2x^4(y^7/(y^2 * y))#
Next, we can use these rules of exponents to simplify the denominator of the #y# terms:
#a = a^color(blue)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#
#1/2x^4(y^7/(y^color(red)(2) * y^color(blue)(1))) ->#
#1/2x^4(y^7/(y^(color(red)(2)+color(blue)(1)))) ->#
#1/2x^4(y^7/(y^3))#
Now, we can use this rule of exponents to complete the simplification of the #y# terms:
#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#
#1/2x^4(y^color(red)(7)/y^color(blue)(3)) ->#
#1/2x^4y^(color(red)(7)-color(blue)(3)) ->#
#1/2x^4y^4#
Or
#(x^4y^4)/2#