First, use this rule of exponents to eliminate many of the terms and simplify the expression:
#a^color(red)(0) = 1#
#(stu^color(red)(0)v)/(s^2t^3uv^color(red)(0) * s^color(red)(0)t^color(red)(0)uv^color(red)(0)) =>#
#(st * 1 * v)/(s^2t^3u * 1 * 1 * 1 * u * 1) =>#
#(stv)/(s^2t^3u * u)#
Next, use these rules of exponents to multiply the #u# terms and rewrite the numerator:
#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#
#(stv)/(s^2t^3u * u) =>#
#(stv)/(s^2t^3u^color(red)(1) * u^color(blue)(1)) =>#
#(stv)/(s^2t^3u^(color(red)(1)+color(blue)(1))) =>#
#(stv)/(s^2t^3u^2) =>#
#(s^color(red)(1)t^color(red)(1)v)/(s^2t^3u^2)#
Next, use these rules of exponents to complete the simplification:
#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))# and #a^color(red)(1) = a#
#(s^color(red)(1)t^color(red)(1)v)/(s^color(blue)(2)t^color(blue)(3)u^2) =>#
#v/(s^(color(blue)(2)-color(red)(1))t^(color(blue)(3)-color(red)(1))u^2) =>#
#v/(s^color(red)(1)t^2u^2) =>#
#v/(st^2u^2)#