How do you multiply and simplify #\frac { s t u ^ { 0} v } { s ^ { 2} t ^ { 3} u v ^ { 0} \cdot s ^ { 0} t ^ { 0} u v ^ { 0} }#?

1 Answer
Mar 21, 2018

See a solution process below:

Explanation:

First, use this rule of exponents to eliminate many of the terms and simplify the expression:

#a^color(red)(0) = 1#

#(stu^color(red)(0)v)/(s^2t^3uv^color(red)(0) * s^color(red)(0)t^color(red)(0)uv^color(red)(0)) =>#

#(st * 1 * v)/(s^2t^3u * 1 * 1 * 1 * u * 1) =>#

#(stv)/(s^2t^3u * u)#

Next, use these rules of exponents to multiply the #u# terms and rewrite the numerator:

#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#(stv)/(s^2t^3u * u) =>#

#(stv)/(s^2t^3u^color(red)(1) * u^color(blue)(1)) =>#

#(stv)/(s^2t^3u^(color(red)(1)+color(blue)(1))) =>#

#(stv)/(s^2t^3u^2) =>#

#(s^color(red)(1)t^color(red)(1)v)/(s^2t^3u^2)#

Next, use these rules of exponents to complete the simplification:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))# and #a^color(red)(1) = a#

#(s^color(red)(1)t^color(red)(1)v)/(s^color(blue)(2)t^color(blue)(3)u^2) =>#

#v/(s^(color(blue)(2)-color(red)(1))t^(color(blue)(3)-color(red)(1))u^2) =>#

#v/(s^color(red)(1)t^2u^2) =>#

#v/(st^2u^2)#