How do you multiply and simplify #\frac { x ^ { 2} - 3x - 10} { x ^ { 2} - 4x - 12} \cdot \frac { 6- x } { x ^ { 2} - 25}#?

1 Answer
Apr 20, 2018

#-1/(x+5)#

Explanation:

First we factorise everything:
#((x+2)(x-5))/((x+2)(x-6))*(6-x)/((x-5)(x+5))=((x+2)(x-5)(6-x))/((x+2)(x-6)(x-5)(x+5))#

#(cancel((x+2))cancel((x-5))(6-x))/(cancel((x+2))(x-6)cancel((x-5))(x+5))=(6-x)/((x-6)(x+5))#

#(6-x)=-(x-6)#

#(6-x)/((x-6)(x+5))=-(x-6)/((x-6)(x+5))=-1/(x+5)#