How do you multiply and simplify #\frac { x ^ { 2} - 5x + 6} { x + 2} \cdot \frac { 2x ^ { 2} + 3x - 2} { x ^ { 2} + 5x - 14}#?

1 Answer
Apr 3, 2017

#(x^2-5x+6)/(x+2)#

Explanation:

#(x^2-5x+6)/(x+2) * (2x^2+3x+2)/(x^2+5x-14)#

factorise quadratic expressions:

#(x^2-5x+6):#
# -3 - 2=-5#
#-3*-2 = 6#

#(x^2-5x+6)=(x-3)(x-2)#

#(x^2+5x-14):#
#7 - 2=5#
#7 * -2 = -14#

#(x^2+5x-14)=(x+7)(x-2)#

#(2x^2+3x-2) = (2x-1 )(x+2 )#

insert simplified expressions into question:

#((x-3)(x-2))/(x+2) * ((x+7)(x-2))/((x+7)(x-2))#

cancel out fractions:

#((x-3)cancel(x-2))/(x+2) * (cancel(x+7)(x-2))/(cancel(x+7)cancel(x-2))#

this leaves you with #(x-3)/(x+2) * (x-2)#

#(x-3)(x-2) = x^2-5x+6#

final answer:#(x^2-5x+6)/(x+2)#