How do you multiply and simplify #\frac { x - 3} { 3x } \cdot \frac { 6} { x ^ { 2} - 9}#?

1 Answer
Jun 17, 2017

See a solution process below:

Explanation:

The numerator of the fraction on the right is the special quadratic form:

#(a + b)(a - b) = a^2 - b^2#

Using this rule we can rewrite the expression as:

#(x - 3)/(3x) * 6/(x^2 - 9) => (x - 3)/(3x) * 6/((x + 3)(x - 3))#

We can now cancel out common terms in the numerator and denominator:

#color(red)(cancel(color(black)(x - 3)))/(color(blue)(cancel(color(black)(3)))x) * (color(blue)(cancel(color(black)(6)))2)/((x + 3)color(red)(cancel(color(black)((x - 3))))) =>#

#2/(x(x + 3))#

Or

#2/(x^2 + 3x)#