How do you multiply #\frac { 9- d ^ { 2} } { d + 3} \cdot \frac { d } { d - 3}#?

1 Answer
Nov 16, 2016

#-d#

Explanation:

#(9-d^2)/(d+3) xxd/(d-3)" "larr# factor diff of squares

#(cancel((3+d))color(blue)((3-d)))/(cancel((d+3))) xx d/((d-3))" "larr(3+d)=(d+3)#

Do a sign "switch-round"

#(color(blue)(-(d-3)))/1 xx d/((d-3))" "larr color(blue)((3-d) = -(d-3))#

#(-(cancel(d-3)))/1 xx d/(cancel((d-3)))" "larr# cancel like factors

#=-d#