How do you multiply #n^ { - 2} \cdot 2n ^ { - 1}#?

1 Answer
Feb 6, 2017

See the entire solution process below:

Explanation:

First, rewrite the expression grouping like terms:

#2(n^-2 * n^-1)#

Now, use this rule for exponents to multiply the #n# terms:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) +color(blue)(b))#

#2(n^color(red)(-2) xx n^color(blue)(-1)) = 2n^(color(red)(-2) +color(blue)(-1)) = 2n^-3#

If you want just positive exponents you can modify this expression using this rule for exponents:

#x^color(red)(a) = 1/x^color(red)(-a)#

#2n^color(red)(-3) = 2/n^color(red)(- -3) = 2/n^3#

The solution is:

#2n^-3# or #2/n^3#