How do you multiply #q^ { - 8} r ^ { 2} s ^ { - 7} t ^ { - 1} \cdot q ^ { - 1} r ^ { 2} s ^ { - 1} t ^ { - 9} \cdot q ^ { - 9} r s t ^ { - 4}#?

1 Answer
Jun 15, 2017

The answer is #r^5/(q^18s^7t^14)#.

Explanation:

Multiply:

#q^(-8)r^2s^(-7)t^(-1)*q^(-1)r^2s^(-1)t^(-9)*q^(-9)rst^(-4)#

Simplify multiplication.

#q^(-8)r^2s^(-7)t^(-1)q^(-1)r^2s^(-1)t^(-9)q^(-9)rst^(-4)#

Regroup like terms. #(a=a^1)#

#(q^-8q^(-1)q^(-9))(r^2r^2r^1)(s^(-7)s^(-1)s^1)(t^(-1)t^(-9)t^(-4))#

Apply product rule of exponents: #a^ma^n=a^(m+n)#.

#q^(-8+(-1)+(-9))r^(2+2+1)s^(-7+(-1)+1)t^(-1+(-9)+(-4))#

Simplify.

#q^(-18)r^5s^(-7)t^(-14)#

Apply negative exponent rule: #a^(-m)=1/a^m.#

#1/q^18xxr^(5)xx1/s^(7)xx1/t^14#

Simplify.

#r^5/(q^18s^7t^14)#