How do you multiply #sqrt[3x] * sqrt[6]#?

3 Answers
Jun 19, 2018

Answer:

#3sqrt(2)sqrt(x)#

Explanation:

Writing
#sqrt(3)*sqrt(2*3)*sqrt(x)=3sqrt(2)*sqrt(x)#

Jun 19, 2018

Answer:

#3sqrt(2x)#

Explanation:

Given: #sqrt(3x)xxsqrt(6)#

Write as: #sqrt(3x)xxsqrt(3xx2) color(white)("d") -> color(white)("d")sqrt3xxsqrt(x)xxsqrt(3)xxsqrt(2)#

#color(white)("dddddddddddddddddd.d") ->color(white)("d") [sqrt(3)xxsqrt(3)]xxsqrt(2x)#

#color(white)("ddddddddddddddddddd.") ->color(white)("d") 3sqrt(2x)#

#\sqrt{3x}\cdot \sqrt6=\sqrt{3x\cdot 6}=\sqrt{18x}=\sqrt{ 3^2\cdot 2x}=\sqrt3^2\sqrt{2x}=3\sqrt{2x}#