How do you multiply #sqrt(-9)sqrt(-63)#?

2 Answers
Jun 25, 2018

Answer:

#=> sqrt 567#

Explanation:

#sqrt -9 * sqrt -63#

#=> sqrt (-9 * -63 ) = sqrt 567#

Jun 25, 2018

Answer:

#-9sqrt7#

Explanation:

#"simplify each radical"#

#"noting that "sqrt(-1)=i#

#sqrt(-9)=sqrt9xxsqrt(-1)=3i#

#sqrt(-63)=sqrt9xxsqrt7xxsqrt(-1)=3sqrt7i#

#[i^2=(sqrt(-1))^2=-1]#

#3ixx3sqrt7i=9sqrt7xxi^2=-9sqrt7#