How do you multiply the matrices #((2, 1), (3, 0), (7, 4))# with #((2, 4), (5, 6))#?

1 Answer
Feb 19, 2016

Multiply rows from the first matrix by columns from the second matrix to get the row-column entry for the product.

Explanation:

#AxxB=C#

#((2,1),(3,0),(7,4))xx((2,4),(5,6))#

Row 1 of A: #(2,1)# times Column 1 of B: #((2),(4))#
gives Row 1: Column 1 of C: #((2xx2+1xx5,"?"),("?","?"),("?","?"))#

Row 1 of A: #(2,1)# times Column 2 of B: #((4),(0))#
gives Row 1: Column 2 of C: #((2xx2+1xx5,2xx4+1xx0),("?","?"),("?","?"))#

Row 2 of A: #3,0)# times Column 1 of B: #((2),(4))#
gives Row 1: Column 1 of C: #((32xx2+1xx5,2xx4+1xx0),(3xx2+0xx5,"?"),("?","?"))#

Continue on in this fashion to get:
#((2xx2+1xx5,2xx4+1xx0),(3xx2+0xx5,3xx4+0xx),(7xx2+4xx5,7xx4+4xx0)) = ((9,8),(6,12),(34,28))#

As a memory aid think about looking at these problems:
through #color(red)("rose col"#ored glasses.
i.e. #color(red)("rows")# first then #color(red)("col")#umns.