How do you multiply #x^ { 0} y ^ { \frac { 1} { 2} } \cdot ( x ^ { 0} y ^ { \frac { 1} { 2} } ) ^ { 2}#?

1 Answer

#ysqrt(y) = y^(3/2) = sqrty^3#

Explanation:

Anything to the power of #0# equals 1. #n^0=1#

A number to the power of #1/2# is the square root of that number. #n^(1/2)=root(2)(n^1)=sqrt(n)#

Raising something with an exponent to another power means multiplying the powers.
#(x^0)^2=x^(0*2)=x^0=1#
#(y^(1/2))^2=y^(1/2*2)=y^1=y#

Now we have: #sqrty*y = y^(1/2) *y = y^(3/2)#

#y^(3/2) = sqrty^3#