How do you perform this operation? #(x^2+2)sum_(n=2)^oo(n(n-1)a_nx^(n-2))#

1 Answer
Oct 30, 2017

# (x^2+2)sum_(n=2)^oo(n(n-1)a_nx^(n-2)) = sum_(n=2)^oo n(n-1)a_n(x^n + x^(n-2)) #

Explanation:

We seek to simplify:

# S = (x^2+2)sum_(n=2)^oo(n(n-1)a_nx^(n-2)) #

The outer terms are independent of the summation index, so we have:

# S = x^2sum_(n=2)^oo n(n-1)a_nx^(n-2) + 2sum_(n=2)^oo n(n-1)a_nx^(n-2) #

# \ \ = sum_(n=2)^oo n(n-1)a_nx^2x^(n-2) + 2sum_(n=2)^oo n(n-1)a_nx^(n-2) #

# \ \ = sum_(n=2)^oo n(n-1)a_nx^n + 2sum_(n=2)^oo n(n-1)a_nx^(n-2) #

# \ \ = sum_(n=2)^oo n(n-1)a_n(x^n + x^(n-2)) #