How do you prove #(4sintheta-costheta)(1-2sin^2 theta) = sin(4theta)#?

1 Answer
Mar 26, 2017

You don't

Explanation:

Using the double-angle formulas #sin(2x)=2sinxcosx# and #cos(2x)=1-2sin^2x#, let's work the right side of the equation.

#sin(4theta)=sin(2(2theta))=2sin(2theta)cos(2theta)=2(2sinthetacostheta)(1-2sin^2theta)=(4sinthetacostheta)(1-2sin^2theta)#

As far as I can tell, #(4sinthetacostheta)(1-2sin^2theta)!=(4sintheta-costheta)(1-2sin^2theta)# so the identity is false.