How do you prove #cos(3x)= 4cos^3(x)-3cos(x)# using the double angle identity?

1 Answer
Aug 15, 2015

It's all about trigonometry (duh)

Explanation:

LHS
#= cos 3x#
#= cos (x + 2x)#
#= cos x cos 2x - sin x sin 2x# [note #cos 2x# and #sin 2x#]
#= cos x (2 cos^2 x - 1) - sin x (2 sin x cos x)# [open the brackets]
#= 2 cos^3 x - cos x - 2 sin^2 x cos x#
#= 2 cos^3 x - cos x - 2 (1 - cos^2 x) cos x# [#sin^2 x + cos^2 x = 1#]
#= 2 cos^3 x - cos x - 2 (cos x - cos^3 x)# [open the brackets]
#= 2 cos^3 x - cos x - 2 cos x + 2 cos^3 x#
#= 4 cos^3 x - 3 cos x# [collect terms]
#=# RHS